试题
题目:
如图,CD是半圆的直径,O为圆心,E是半圆上一点,且∠EOD=93°,A是DC延长线上一点,AE与半圆相交于点B,如果AB=OC,则∠EAD=
31
31
°,∠EOB=
56
56
°,∠ODE=
43.5°
43.5°
.
答案
31
56
43.5°
解:设∠A=x,
∵AB=OC,
∴∠BOA=x,
∴∠EBO=2x,
而OB=OE,
∴∠AEO=2x,
∴∠EOD=∠A+∠AEO,
而∠EOD=93°,
∴x+2x=93°,
∴x=31°,
∴∠EOB=180°-4x=180°-124°=56°,
∴∠ODE=(180°-93°)÷2=43.5°.
故答案为31°,56°,43.5°.
考点梳理
考点
分析
点评
专题
圆心角、弧、弦的关系.
设∠A=x,由AB=OC,得到∠BOA=x,根据三角形外角性质得到∠EBO=2x,而OB=OE,得∠AEO=2x,则x+2x=93°,得到x=31°,再根据三角形的内角和定理得∠EOB=180°-4x=180°-124°=56°,∠ODE=(180°-93°)÷2=43.5°.
本题考查了在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等.也考查了等腰三角形的性质和三角形内角和定理以及外角性质.
计算题.
找相似题
(2013·内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为( )
(2010·烟台)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=
1
2
弧AEB,正确结论的个数是( )
(2008·庆阳)如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立的是( )
(2006·遂宁)如图,已知AB是⊙O的直径,
BC
=
CD
=
DE
.∠BOC=40°,那么∠AOE=( )
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )