试题
题目:
如图,BC为⊙O的直径,OA是⊙O的半径,弦BE∥OA,求证:
AC
=
AE
.
答案
证明:连接OE,
∵BE∥OA,
∴∠B=∠COA,∠E=∠AOE,
∵OE=OB,
∴∠B=∠E,
∴∠COA=∠AOE,
∴弧AC=弧AE.
证明:连接OE,
∵BE∥OA,
∴∠B=∠COA,∠E=∠AOE,
∵OE=OB,
∴∠B=∠E,
∴∠COA=∠AOE,
∴弧AC=弧AE.
考点梳理
考点
分析
点评
专题
圆心角、弧、弦的关系.
连接OE,根据平行线性质得出∠B=∠COA,∠E=∠AOE,根据等腰三角形性质得出∠B=∠E,推出∠COA=∠AOE,
推出即可.
本题考查了平行线性质和等腰三角形性质,圆心角、弧、弦之间的关系的应用,注意:在同圆或等圆中,两个圆心角、两条弧、两条弦,其中有一对相等,那么其余两对也相等.
证明题.
找相似题
(2013·内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为( )
(2010·烟台)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=
1
2
弧AEB,正确结论的个数是( )
(2008·庆阳)如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立的是( )
(2006·遂宁)如图,已知AB是⊙O的直径,
BC
=
CD
=
DE
.∠BOC=40°,那么∠AOE=( )
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )