答案
证明:(1)过点O作OM⊥EF于M,作ON⊥CD于N,连接OD、OE,
∵∠DPB=∠EPB,

∴OM=ON.
又∵OE=OD,
∵∠OMP=∠ONP=90°,
∴Rt△ODN≌Rt△OEM(HL).
∴DN=EM.
∵OM⊥EF,ON⊥CD,
∴点M是EF的中点,点N是CD的中点.
∴EM=
EF,DN=
CD.
∴CD=EF.
(2)∵CD=EF,
∴
=,
∴
-=-.
即
=.
证明:(1)过点O作OM⊥EF于M,作ON⊥CD于N,连接OD、OE,
∵∠DPB=∠EPB,

∴OM=ON.
又∵OE=OD,
∵∠OMP=∠ONP=90°,
∴Rt△ODN≌Rt△OEM(HL).
∴DN=EM.
∵OM⊥EF,ON⊥CD,
∴点M是EF的中点,点N是CD的中点.
∴EM=
EF,DN=
CD.
∴CD=EF.
(2)∵CD=EF,
∴
=,
∴
-=-.
即
=.