试题
题目:
如图,A、B、C都是⊙O上的点,
AC
=
BC
,CD⊥OA于D,CE⊥OB于E.求证:OD=OE.
答案
证明:∵
AC
=
BC
,
∴∠AOC=∠BOC,
又∵CD⊥OA,CE⊥OB,
∴∠CDO=∠CEO=90°,
在△ODC和△OEC中,
∠DOC=∠EOC
∠ODC=∠OEC
OC=OC
,
∴△ODC≌△OEC(AAS),
∴OD=OE.
证明:∵
AC
=
BC
,
∴∠AOC=∠BOC,
又∵CD⊥OA,CE⊥OB,
∴∠CDO=∠CEO=90°,
在△ODC和△OEC中,
∠DOC=∠EOC
∠ODC=∠OEC
OC=OC
,
∴△ODC≌△OEC(AAS),
∴OD=OE.
考点梳理
考点
分析
点评
专题
圆心角、弧、弦的关系;全等三角形的判定与性质.
由
AC
=
BC
,可得∠AOC=∠BOC,又由CD⊥OA,CE⊥OB,易证得△ODC≌△OEC,即可证得OD=OE.
此题考查了弧与圆心角的关系以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
证明题.
找相似题
(2013·内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为( )
(2010·烟台)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=
1
2
弧AEB,正确结论的个数是( )
(2008·庆阳)如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立的是( )
(2006·遂宁)如图,已知AB是⊙O的直径,
BC
=
CD
=
DE
.∠BOC=40°,那么∠AOE=( )
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )