圆心角、弧、弦的关系;全等三角形的判定与性质;垂径定理.
连OM,ON,由M,N分别为AB,CD的中点,根据垂径定理的推论得到OM⊥AB,ON⊥CD,即∠AMO=∠CNO=90°,又AB=CD,根据在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等得到OM=ON,所以∠OMN=∠ONM,于是∠AMN=∠CNM.
本题考查了在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等.也考查了垂径定理的推论和等腰三角形的性质.
证明题.