试题
题目:
已知:如图,AB是⊙O的直径,点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.求证:DE=BF.
答案
证明:∵弧CB=弧CD,
∴CB=CD,∠CAE=∠CAB,
又∵CF⊥AB,CE⊥AD,
∴CE=CF,
∴Rt△CED≌Rt△CFB,
∴DE=BF.
证明:∵弧CB=弧CD,
∴CB=CD,∠CAE=∠CAB,
又∵CF⊥AB,CE⊥AD,
∴CE=CF,
∴Rt△CED≌Rt△CFB,
∴DE=BF.
考点梳理
考点
分析
点评
专题
圆心角、弧、弦的关系;全等三角形的判定与性质.
由弧CB=弧CD,根据圆周角定理得到CB=CD,∠CAE=∠CAB,而CF⊥AB,CE⊥AD,根据角平分线定理得到CE=CF,于是有Rt△CED≌Rt△CFB,即可得到结论.
本题考查了在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等.也考查了圆周角定理、角平分线定理以及三角形全等的判定与性质.
证明题.
找相似题
(2013·内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为( )
(2010·烟台)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=
1
2
弧AEB,正确结论的个数是( )
(2008·庆阳)如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立的是( )
(2006·遂宁)如图,已知AB是⊙O的直径,
BC
=
CD
=
DE
.∠BOC=40°,那么∠AOE=( )
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )