试题
题目:
已知在半径为2cm的圆中,弦AB所对的劣弧长为圆周长的
1
3
,则弦AB的长为
2
3
2
3
.
答案
2
3
解:连接OA、OB,过O作OD⊥AB于D,
∵弦AB所对的劣弧长为圆周长的
1
3
,
∴∠AOB=360°×
1
3
=120°,
∵OA=OB,OD⊥AB,
∴∠BOD=
1
2
∠AOB=60°,
∵∠ODB=90°,
∴∠DBO=30°,
∴OD=
1
2
OB=
1
2
×2=1,
由勾股定理得:BD=
2
2
-
1
2
=
3
,
由垂径定理得:AB=2BD=2
3
,
故答案为:2
3
.
考点梳理
考点
分析
点评
垂径定理;勾股定理;圆心角、弧、弦的关系.
连接OA、OB,过O作OD⊥AB于D,求出∠AOB,求出∠DOB,求出∠DBO,求出OB,根据勾股定理求出BD,根据垂径定理得出AB=2BD,代入求出即可.
本题考查了圆心角、弧、弦之间的关系,垂径定理,勾股定理的应用,主要考查学生应用定理进行推理和计算的能力.
找相似题
(2013·内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为( )
(2010·烟台)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=
1
2
弧AEB,正确结论的个数是( )
(2008·庆阳)如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立的是( )
(2006·遂宁)如图,已知AB是⊙O的直径,
BC
=
CD
=
DE
.∠BOC=40°,那么∠AOE=( )
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )