试题
题目:
一条弦把圆分成5:1两部分,若圆的半径为2cm,此弦长为
2cm
2cm
.
答案
2cm
解:连接OA,OB,过O作OD⊥AB.
∵一条弦把圆分成5:1两部分,
∴∠AOB=60°,
∴∠2=∠1=30°;
又∵OD⊥AB,OA=2cm,
∴AD=
1
2
OA=1cm,
∴AB=2AD=2cm.
故答案是:2cm.
考点梳理
考点
分析
点评
专题
圆心角、弧、弦的关系;等边三角形的判定与性质.
如图所示:首先作辅助线连接OA,OB,过O作OD⊥AB.根据特殊角的三角函数值求得AD的长度;然后由垂径定理求得AB的长度.
本题综合考查了等边三角形的判定与性质,圆心角、弧、弦间的关系.本题利用了一个周角是360°求得所求弦所对的圆心角的度数.
推理填空题.
找相似题
(2013·内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为( )
(2010·烟台)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=
1
2
弧AEB,正确结论的个数是( )
(2008·庆阳)如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立的是( )
(2006·遂宁)如图,已知AB是⊙O的直径,
BC
=
CD
=
DE
.∠BOC=40°,那么∠AOE=( )
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )