试题
题目:
如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=56°,则α的度数是
52°
52°
.
答案
52°
解:连接OC、OD,
∵∠BAO=∠CBO=α,
∴∠AOB=∠BOC=∠COD=∠DOE,
∵∠AOE=56°,
∴∠AOB=
360°-56°
4
=76°,
∴α=
180°-76°
2
=52°.
故答案为:52°.
考点梳理
考点
分析
点评
圆心角、弧、弦的关系;三角形内角和定理.
要求α的度数,只需求出∠AOB的度数,根据已知条件,易证∠AOB=∠BOC=∠COD=∠DOE,所以可以求出α的度数.
本题考查了与圆有关的性质,在圆中,半径处处相等,由半径和弦组成的三角形是等腰三角形,证明题目时要注意应用.
找相似题
(2013·内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为( )
(2010·烟台)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=
1
2
弧AEB,正确结论的个数是( )
(2008·庆阳)如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立的是( )
(2006·遂宁)如图,已知AB是⊙O的直径,
BC
=
CD
=
DE
.∠BOC=40°,那么∠AOE=( )
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )