试题

题目:
(2009·河东区二模)点A是以MN为直径的半圆上一个靠近点M的三等分点,B是弧AM的中点,P是直径MN上一个动点,⊙O的半径为5,则PA+PB的最小值为
5
2
5
2

答案
5
2

青果学院解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,AA′.
∵点A与A′关于MN对称,点A是半圆上的一个三等分点,
∴∠A′ON=∠AON=60°,PA=PA′,
∵点B是弧AN^的中点,
∴∠BON=30°,
∴∠A′OB=∠A′ON+∠BON=90°,
又∵OA=OA′=5,
∴A′B=5
2

∴PA+PB=PA′+PB=A′B=5
2

故答案为:5
2
考点梳理
轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦的关系.
本题是要在MN上找一点P,使PA+PB的值最小,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.
考查了轴对称-最短路线问题,正确确定P点的位置是解题的关键,确定点P的位置这类题在课本中有原题,因此加强课本题目的训练至关重要.
找相似题