试题
题目:
在⊙O中,
AB
=2
CD
,那么
2
2
.
A.AB=2CD
B.AB=CD
C.AB<2DC
D.AB>2DC.
答案
C
解:取
AB
的中点E,连结BE、AE,如图,
∵
AB
=2
CD
,
∴
CD
=
AE
=
BE
,
∴CD=AE=BE,
而AE+BE>AB,
∴AB<2CD.
故选C.
考点梳理
考点
分析
点评
圆心角、弧、弦的关系;三角形三边关系.
取
AB
的中点E,连结BE、AE,则
CD
=
AE
=
BE
,根据圆心角、弧、弦的关系得到CD=AE=BE,再根据三角形三边的关系得到AE+BE>AB,所以AB<2CD.
本题考查了圆心角、弧、弦的关系:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等;在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
找相似题
(2013·内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为( )
(2010·烟台)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=
1
2
弧AEB,正确结论的个数是( )
(2008·庆阳)如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立的是( )
(2006·遂宁)如图,已知AB是⊙O的直径,
BC
=
CD
=
DE
.∠BOC=40°,那么∠AOE=( )
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )