试题
题目:
如图所示,在8×8的网格中,我们把△ABC在图1中作轴对称变换,在图2中作旋转变换,已知网格中的线段ED、线段MN分别是边AB经两种不同变换后所得的像,请在两图中分别画出△ABC经各自变换后的像,并标出对称轴和旋转中心(要求:不写作法,作图工具不限,但要保留作图痕迹).
答案
解:所画图形如下所示:
其中GH为轴对称变换的对称轴,△DEF与△BAC关于直线GH对称;
点O为旋转变换的旋转中心,△MNP由△ABC以点O为旋转中心,顺时针旋转90°得到.
解:所画图形如下所示:
其中GH为轴对称变换的对称轴,△DEF与△BAC关于直线GH对称;
点O为旋转变换的旋转中心,△MNP由△ABC以点O为旋转中心,顺时针旋转90°得到.
考点梳理
考点
分析
点评
专题
作图-轴对称变换;作图-旋转变换.
(1)连接BD和AE,后连接GH,则GH即为轴对称变换的对称轴,作点C关于GH的对称点,然后顺次连接各点即可;
(2)先根据线段AB经旋转变换后得到MN,找出旋转中心和旋转方向,然后根据旋转规律找出旋转后的各点,顺次连接各点即可.
本题考查轴对称变换和旋转变换的知识,难度适中,解题关键是对这两种变换的熟练掌握以便灵活运用.
作图题.
找相似题
(2009·潍坊)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).画出△ABC绕点O逆时针旋转90°后的△A′B′C′.
如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABC成中心对称的三角形.
(2013·厦门)(1)计算:5a+2b+(3a-2b);
(2)在平面直角坐标系中,已知点A(-4,1),B(-2,0),C(-3,-1).请在图1上画出△ABC,并画出与△ABC关于原点O对称的图形;
(3)如图2所示,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.求证:AB∥CD.
(2013·钦州)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:
(1)画出△ABC关于x轴对称的△A
1
B
1
C
1
,并写出点A
1
的坐标.
(2)画出△A
1
B
1
C
1
绕原点O旋转180°后得到的△A
2
B
2
C
2
,并写出点A
2
的坐标.
(2013·齐齐哈尔)如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).
(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O
1
A
1
B
1
(2)画出△OAB绕点O逆时针旋转90°后的△OA
2
B
2
,并求出点A旋转到A
2
所经过的路径长(结果保留π)