试题

题目:
青果学院(2006·扬州)如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:
(1)请在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);
(2)在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是
(-1,1)
(-1,1)
,△ABC的周长是
2
2
+2
10
2
2
+2
10
(结果保留根号);
(3)画出△ABC以点C为旋转中心,旋转180°后的△A′B′C,连接AB′和A′B,试说出四边形ABA′B′是何特殊四边形,并说明理由.
答案
(-1,1)

2
2
+2
10

青果学院解:(1)图形如右.

(2)图见上,C(-1,1),△ABC的周长是2
2
+2
10


(3)由旋转180°可知,BC=CB′,AC=CA′,
∴四边形ABA′B′是平行四边形,
又∵AA′=BB′,
∴四边形ABA′B′是矩形.
考点梳理
作图-旋转变换;等腰三角形的性质;矩形的判定.
根据A点的坐标,首先确定坐标系的位置,在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,则C一定在AB的中垂线上,通过作图即可确定C的位置,根据勾股定理即可求得三角形的周长,根据对角线的关系即可判定四边形的形状.本
本题考查了在格点上找等腰三角形的顶点,旋转变换作图,根据旋转中心画图,确定旋转后的点的坐标时,要抓住“动”与“不动”,看图是关键.
网格型.
找相似题