试题
题目:
图形分割是令人困惑有趣的.比如将一个正方形分割成若干锐角三角形,要求分割的锐角三角的个数尽可能少就是让人感兴趣的问题.下图即是将正方形分割成11个、10个、9个、8个锐角三角形的图形(如图 ①~④):其中图④将正方形分割成8个锐角三角形不仅是一种巧妙的方法,而且图④还是一个轴对称图形,请找一找图④中全等三角形有( )
A.3
B.4
C.5
D.6
答案
A
解:∵图④是一个轴对称图形,∴图④中全等三角形有△AFC≌△EGC,△AFB≌△EGD,△BFN≌△DGN一个有3对.
故选;A.
考点梳理
考点
分析
点评
利用轴对称设计图案;全等三角形的判定;图形的剪拼.
根据轴对称图形的性质直接得出全等三角形即可.
此题主要考查了全等三角形的判定和轴对称图形的性质,利用轴对称图形的性质得出是解题关键.
找相似题
(2012·潍坊)甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是( ),[说明:棋子的位置用数对表示,如A点在(6,3)].
(2013·平顶山二模)如图所示,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有( )
某校计划修建一座是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、角、正方形、圆、线段、矩形、梯形等七种图案,你认为不符合条件的是( )
如图,网格中的每个小正方形的边长为1,如果把阴影部分剪拼成一个正方形,那么这个新正方形的边长是 ( )
如图①是3×3正方形方格,现要将其中两个小方格涂黑,并且使得涂黑后的整个图案是轴对称图形(约定:绕正方形ABCD的中心旋转能重合的图案视为同一种,如图②中设计的四幅图只算一种图案),那么不同的图案共有( )