试题
题目:
如图,过△ABC的顶点A作AE⊥BC,垂足为E.点D是射线AE上一动点(点D不与顶点A重合),连接DB、DC.已知BC=m,AD=n
(1)若动点D在BC的下方时(如图①),求S
四边形ABDC
的值(结果用含m、n的代数式表示);
(2)若动点D在BC的上方时(如图②),(1)中结论是否仍成立?说明理由;
(3)请你按以下要求在8×6的方格中(如图③,每一个小正方形的边长为1),设计一个轴对称图形.设计要求如下:对角线互相垂直且面积为6的格点四边形(4个顶点都在格点上).
答案
解:(1)S
四边形ABDC
=S
△ABC
+S
△BDC
=
1
2
BC×AE+
1
2
BC×DE=
1
2
BC×(AE+DE)=
1
2
BC×AD=
1
2
mn;
(2)S
四边形ABDC
=S
△ABC
-S
△BDC
=
1
2
BC×AE-
1
2
BC×DE=
1
2
BC×(AE-DE)=
1
2
BC×AD=
1
2
mn;
(3)可画一个对角线分别为3、4的四边形,如图所示:
.
解:(1)S
四边形ABDC
=S
△ABC
+S
△BDC
=
1
2
BC×AE+
1
2
BC×DE=
1
2
BC×(AE+DE)=
1
2
BC×AD=
1
2
mn;
(2)S
四边形ABDC
=S
△ABC
-S
△BDC
=
1
2
BC×AE-
1
2
BC×DE=
1
2
BC×(AE-DE)=
1
2
BC×AD=
1
2
mn;
(3)可画一个对角线分别为3、4的四边形,如图所示:
.
考点梳理
考点
分析
点评
专题
利用轴对称设计图案.
(1)根据S
四边形ABDC
=S
△ABC
+S
△BDC
即可得出答案;
(2)根据S
四边形ABDC
=S
△ABC
-S
△BDC
即可得出答案;
(3)对角线互相垂直的四边形的面积等于对角线乘积的一半,再由轴对称的特点即可作出图形.
本题考查了不规则图形的面积及轴对称的特点,第(1)(2)问比较简单,将所求面积拆分即可,第三问答案不唯一,同学们可以灵活作答.
数形结合.
找相似题
(2012·潍坊)甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是( ),[说明:棋子的位置用数对表示,如A点在(6,3)].
(2013·平顶山二模)如图所示,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有( )
某校计划修建一座是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、角、正方形、圆、线段、矩形、梯形等七种图案,你认为不符合条件的是( )
如图,网格中的每个小正方形的边长为1,如果把阴影部分剪拼成一个正方形,那么这个新正方形的边长是 ( )
如图①是3×3正方形方格,现要将其中两个小方格涂黑,并且使得涂黑后的整个图案是轴对称图形(约定:绕正方形ABCD的中心旋转能重合的图案视为同一种,如图②中设计的四幅图只算一种图案),那么不同的图案共有( )