试题
题目:
下列方程的解分别是:
(1)x
3
-3x
2
+2x=0
x
1
=0,x
2
=1,x
3
=2
x
1
=0,x
2
=1,x
3
=2
.
(2)x
4
-5x
2
+4=0
x
1
=2,x
2
=-2,x
3
=1,x
4
=1
x
1
=2,x
2
=-2,x
3
=1,x
4
=1
.
(3)(x
2
-3x)
2
-2(x
2
-3x)-8=0
x
1
=4,x
2
=-1,x
3
=1,x
4
=2
x
1
=4,x
2
=-1,x
3
=1,x
4
=2
.
(4)(x
2
-5x-6)(x
2
-5x+11)=18
x
1
=
5+
53
2
,
x
2
=
5-
53
2
x
1
=
5+
53
2
,
x
2
=
5-
53
2
.
(5)(x+1)(x+2)(x-3)(x-4)=36
x
1
=1+
13
,
x
2
=1-
13
,
x
3
=
x
4
=1
x
1
=1+
13
,
x
2
=1-
13
,
x
3
=
x
4
=1
.
(6)(x+1)(x-1)=1
x
1,2
=
±
2
x
1,2
=
±
2
.
(7)x
2
-3|x|+2=0
x
1
=1,x
2
=2或x
1
=-1,x
2
=-2
x
1
=1,x
2
=2或x
1
=-1,x
2
=-2
.
(8)(x+1)(x-1)=x+1
x
1
=2,x
2
=-1
x
1
=2,x
2
=-1
.
(9)x
2
-3|x|+2=0
x
1
=1,x
2
=2或x
1
=-1,x
2
=-2
x
1
=1,x
2
=2或x
1
=-1,x
2
=-2
.
(10)x
4
+2x
3
+5x
2
+4x-12=0
x
1
=-2,x
2
=1
x
1
=-2,x
2
=1
.
答案
x
1
=0,x
2
=1,x
3
=2
x
1
=2,x
2
=-2,x
3
=1,x
4
=1
x
1
=4,x
2
=-1,x
3
=1,x
4
=2
x
1
=
5+
53
2
,
x
2
=
5-
53
2
x
1
=1+
13
,
x
2
=1-
13
,
x
3
=
x
4
=1
x
1,2
=
±
2
x
1
=1,x
2
=2或x
1
=-1,x
2
=-2
x
1
=2,x
2
=-1
x
1
=1,x
2
=2或x
1
=-1,x
2
=-2
x
1
=-2,x
2
=1
解:(1)x
3
-3x
2
+2x=0,∴x(x
2
-3x+2)=0,∴x
1
=0,x
2
=1,x
3
=2;
(2)x
4
-5x
2
+4=0,∴(x
2
-4)(x
2
-1)=0,∴x
1
=2,x
2
=-2,x
3
=1,x
4
=1;
(3)(x
2
-3x)
2
-2(x
2
-3x)-8=0,设x
2
-3x=y,
∴y
2
-2y-8=0,∴(y-4)(y+2)=0,∴x
1
=4,x
2
=-1,x
3
=1,x
4
=2;
(4)∵(x
2
-5x)
2
+5(x
2
-5x)-66=18,
∴(x
2
-5x)
2
+5(x
2
-5x)-84=0,(x
2
-5x+12)(x
2
-5x-7)=0
∴x
2
-5x+12=0(无解),或x
2
-5x-7=0,
它的解为x
1
=
5+
53
2
,
x
2
=
5-
53
2
;
(5)∵(x
2
-2x-3)(x
2
-2x-8)=36,
∴(x
2
-2x)
2
-11(x
2
-2x)-12=0,
∴(x
2
-2x-12)(x
2
-2x+1)=0,
∴x
2
-2x-12=0或x
2
-2x+1=0,
∴
x
1
=1+
13
,
x
2
=1-
13
,
x
3
=
x
4
=1
(6)(x+1)(x-1)=1∴x
1,2
=
±
2
;
(7)x
2
-3|x|+2=0,当x>0时,x
1
=1,x
2
=2;当x≤0时,x
1
=-1,x
2
=-2;
(8)x
2
(x-2)-4(x-2)=0,(x-2)(x
2
-4)=0,(x-2)
2
(x+2)=0,
∴x
1
=x
2
=2,x
3
=-2
(9)∵x
2
=|x
2
|=|x·x|=|x||x|=|x|
2
,∴原方程为|x|
2
-3|x|+2=0,∴(|x|-1)(|x|-2)=0,∴|x|-1=0或|x|=2,∴x
1
=1,x
2
=-1,x
3
=2,x
4
=-2.
(10)∵(x
4
+2x
3
+x
2
)+(4x
2
+4x)-12=0.
即(x
2
+x)
2
+4(x
2
+x)-12=0,∴(x
2
+x+6)(x
2
+x-2)=0,∵
x
2
+x+6=(x+
1
2
)
2
+(6-
1
4
)≠0,∴
x
2
+x-2=0,∴
x
1
=-2,
x
2
=1.
考点梳理
考点
分析
点评
专题
高次方程.
(1)先分解因式再求解即可;
(2)分解因式再求解;
(3)先分解因式再求解即可;
(4)换元法即可求解;
(5)换元法即可求解;
(6)根据平方差公式即可求解;
(7)先分类讨论去绝对值即可求解;
(8)根据平方差公式即可求解;
(9)先分类讨论去绝对值即可求解;
(10)分解因式后即可求解;
本题考查了高次方程,难度一般,关键是注意细心运算即可.
计算题.
找相似题
(2009·中山)方程组
3x+y=0
x
2
+
y
2
=10
的解是( )
(2005·哈尔滨)方程组
x
2
+
y
2
-2xy=4
5x=10
的解是( )
(2004·东城区)方程组
x+y=3 ①
xy=-4 ②
的解是( )
(2002·潍坊)方程组
(x-3
)
2
+
y
2
=9
x+2y=0
的解是( )
(2002·哈尔滨)方程组
x
2
+
y
2
-2xy=4
5x=10
的解是( )