题目:
某商场销售一批名牌衬衫,平均每天可售出20件,每件可盈利40元.为了扩大销售量,增加盈利,尽快减少库存,商场采取适当的降价措施.经调查发现,如果每件降价1元,商场平均每天可多售出2件.
(1)若商场平均每天要盈利12O0元,每件衬衫应降价多少元?
(2)该商场平均每天盈利能达到1500元吗?如果能,求出此时应降价多少;如果不能,请说明理由;
(3)该商场平均每天盈利最多多少元?达到最大值时应降价多少元?
答案
解:(1)设每件衬衫应降价x元,则每件盈利40-x元,每天可以售出20+2x,
由题意,得(40-x)(20+2x)=1200,
即:(x-10)(x-20)=0,
解,得x
1=10,x
2=20,
为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,
所以,若商场平均每天要盈利12O0元,每件衬衫应降价20元;
(2)假设能达到,由题意,得(40-x)(20+2x)=1500,
整理,得2x
2-60x+700=0,
△=60
2-2×4×700=3600-4200<0,
即:该方程无解,
所以,商场平均每天盈利不能达到1500元;
(3)设商场平均每天盈利y元,每件衬衫应降价x元,
由题意,得y=(40-x)(20+2x),
=800+80x-20x-2x
2,
=-2(x
2-30x+225)+450+800,
=-2(x-15)
2+1250,
当x=15元时,该函数取得最大值为1250元,
所以,商场平均每天盈利最多1250元,达到最大值时应降价15元.
解:(1)设每件衬衫应降价x元,则每件盈利40-x元,每天可以售出20+2x,
由题意,得(40-x)(20+2x)=1200,
即:(x-10)(x-20)=0,
解,得x
1=10,x
2=20,
为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,
所以,若商场平均每天要盈利12O0元,每件衬衫应降价20元;
(2)假设能达到,由题意,得(40-x)(20+2x)=1500,
整理,得2x
2-60x+700=0,
△=60
2-2×4×700=3600-4200<0,
即:该方程无解,
所以,商场平均每天盈利不能达到1500元;
(3)设商场平均每天盈利y元,每件衬衫应降价x元,
由题意,得y=(40-x)(20+2x),
=800+80x-20x-2x
2,
=-2(x
2-30x+225)+450+800,
=-2(x-15)
2+1250,
当x=15元时,该函数取得最大值为1250元,
所以,商场平均每天盈利最多1250元,达到最大值时应降价15元.