试题

题目:
若a+b+|
c-1
-1
|=4
a-2
+2
b+1
-4
,求
c2-2
a+b
+1
的值.
答案
解;∵a+b+|
c-1
-1
|=4
a-2
+2
b+1
-4

∴a+b+|
c-1
-1
|-4
a-2
-2
b+1
+4
=0,
∴a-4
a-2
+b-2
b+1
+|
c-1
-1
|+4=0,
a-2
) 2-4
a-2
+4
+(
b+1
) 2-2
b+1
+1+|
c-1
-1
|=0,
(
a-2
-2) 2
+(
b+1
-1) 2
+|
c-1
-1
|=0,
a-2
-2=0,
b+1
-1=0,
c-1
-=0,
a-2
=2,
b+1
=1,
c-1
=1,
∴a=6,b=0,c=2,
c2-2
a+b
+1
=
22-2
6+0
+1
=
5-2
6
=
(
3
-
2
) 2 
=
3
-
2

解;∵a+b+|
c-1
-1
|=4
a-2
+2
b+1
-4

∴a+b+|
c-1
-1
|-4
a-2
-2
b+1
+4
=0,
∴a-4
a-2
+b-2
b+1
+|
c-1
-1
|+4=0,
a-2
) 2-4
a-2
+4
+(
b+1
) 2-2
b+1
+1+|
c-1
-1
|=0,
(
a-2
-2) 2
+(
b+1
-1) 2
+|
c-1
-1
|=0,
a-2
-2=0,
b+1
-1=0,
c-1
-=0,
a-2
=2,
b+1
=1,
c-1
=1,
∴a=6,b=0,c=2,
c2-2
a+b
+1
=
22-2
6+0
+1
=
5-2
6
=
(
3
-
2
) 2 
=
3
-
2
考点梳理
配方法的应用;非负数的性质:绝对值;非负数的性质:偶次方.
先根据已知得出a+b+|
c-1
-1
|-4
a-2
-2
b+1
+4
=0,再通过配方得出(
a-2
-2) 2
+(
b+1
-1) 2
+|
c-1
-1
|=0,即可求出a,b,c的值,再代入要求的式子即可.
此题考查了配方法的应用;解题时要注意配方法的步骤,注意在变形的过程中不要改变式子的值,关键是通过配方得出a,b,c的值.
找相似题