根的判别式;解一元二次方程-公式法;配方法的应用.
(1)根据关于x的方程(a-1)x2-(a+1)x+2=0有两个不相等的实数根,则△>0,且二次项系数不为0,列出不等式组,即可求出a的取值范围.
(2)分a-1=0和a-1≠0两种情况讨论,①当a-1=0时,即a=1时,原方程变为-2x+2=0.方程的解为 x=1; ②根据方程有实数根,得出判别式≥0,再利用公式法求出方程的根,根据方程(a-1)x2-(a+1)x+2=0都是正整数根,得出a的取值范围,即可得出答案.
本题主要考查了一元二次方程的根,根的判别式和公式法解一元二次方程.解答此题的关键是熟知一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0,方程没有实数根.
分类讨论.