试题

题目:
(2009·同安区模拟)已知x1、x2是关于x的一元二次方程x2-2(k+1)x+k2+2=0的两根,若y=(x1+1)(x2+1).
(1)当y=8时,求k的值.
(2)是比较y与-k2+2k+2的大小,并说明理由.
答案
解:(1)∵x1+x2=-
b
a
=2(k+1),x1x2=
c
a
=k2+2,
∴y=(x1+1)(x2+1),
=x1x2+(x1+x2)+1,
=k2+2+2(k+1)+1,
=k2+2k+5=8,
解得:k1=1,k2=-3(此时△<0,不合题意舍去);
(2)∵y=k2+2k+5,
∴k2+2k+5-(-k2+2k+2)=2k2+2,
∴y与-k2+2k+2的差大于0,
∴y>-k2+2k+2.
解:(1)∵x1+x2=-
b
a
=2(k+1),x1x2=
c
a
=k2+2,
∴y=(x1+1)(x2+1),
=x1x2+(x1+x2)+1,
=k2+2+2(k+1)+1,
=k2+2k+5=8,
解得:k1=1,k2=-3(此时△<0,不合题意舍去);
(2)∵y=k2+2k+5,
∴k2+2k+5-(-k2+2k+2)=2k2+2,
∴y与-k2+2k+2的差大于0,
∴y>-k2+2k+2.
考点梳理
根与系数的关系;配方法的应用.
(1)利用根与系数关系求出x1+x2=-
b
a
,x1x2=
c
a
,再代入y=8求出即可;
(2)利用根与系数关系将y用k表示出,进而将两式相减判断结果即可.
此题主要考查了根与系数关系,熟练利用根与系数关系求出y的值是解题关键.
找相似题