试题

题目:
已知a,b是实数,且a2-2a+
b-3
+1=0
,则a=
1
1
,b=
3
3

答案
1

3

解:已知等式变形得:a2-2a+1+
b-3
=0,即(a-1)2+
b-3
=0,
可得a-1=0且b-3=0,
解得:a=1,b=3.
故答案为:1;3
考点梳理
配方法的应用;非负数的性质:偶次方;非负数的性质:算术平方根.
将已知等式利用完全平方公式变形后,利用两个非负数之和为0时,两非负数同时为0列出关于a与b的方程,求出方程的解即可得到a与b的值.
此题考查了配方法的应用,以及非负数的性质:偶次幂及算术平方根,灵活运用完全平方公式是解本题的关键.
计算题.
找相似题