试题
题目:
已知a、b、c是三角形的三边,则代数式a
2
-2ab+b
2
-c
2
的值
小于
小于
0.(填大于小于或等于)
答案
小于
解:a
2
-2ab+b
2
-c
2
,
=(a-b)
2
-c
2
,
=(a-b+c)(a-b-c),
∵a+c-b>0,a-b-c<0,
∴(a-b+c)(a-b-c)<0,
即a
2
-2ab+b
2
-c
2
<0.
故答案为:小于.
考点梳理
考点
分析
点评
专题
配方法的应用;三角形三边关系.
先把前三项利用完全平方公式配方,再与第四项利用平方差公式分解因式,然后根据三角形的任意两边之和大于第三边,任意两边之差小于第三边进行判断.
本题考查了利用完全平方公式配方,利用平方差公式因式分解,三角形的三边关系,利用完全平方公式配方整理成两个因式乘积的形式是解题的关键.
常规题型.
找相似题
(2011·荆门)将代数式x
2
+4x-1化成(x+p)
2
+q的形式( )
(2010·泰州)已知
P=
7
15
m-1,Q=
m
2
-
8
15
m
(m为任意实数),则P、Q的大小关系为( )
(2002·咸宁)用配方法将二次三项式a
2
-2a+2变形的结果是( )
(2002·河北)将二次三项式x
2
+6x+7进行配方,正确的结果应为( )
(2002·杭州)用配方法将二次三项式a
2
-4a+5变形,结果是( )