试题
题目:
研究下列算式,你会发现什么规律?
1×3+1=4=2
2
2×4+1=9=3
2
3×5+1=16=4
2
4×6+1=25=5
2
…
(1)请你找出规律井计算7×9+1=
64
64
=(
8
8
)
2
(2)用含有n的式子表示上面的规律:
n(n+2)+1=(n+1)
2
n(n+2)+1=(n+1)
2
.
(3)用找到的规律解决下面的问题:
计算:
(1+
1
1×3
)(1+
1
2×4
)(1+
1
3×5
)(1+
1
4×6
)…(1+
1
9×11
)
=
20
11
20
11
.
答案
64
8
n(n+2)+1=(n+1)
2
20
11
解:(1)7×9+1=64=8
2
;
(2)上述算式有规律,可以用n表示为:n(n+2)+1=n
2
+2n+1=(n+1)
2
.
(3)原式=
2(9+1)
9+2
=
20
11
.
故答案为:64,8;n(n+2)+1=(n+1)
2
;
20
11
.
考点梳理
考点
分析
点评
专题
规律型:数字的变化类.
(1)(2)观察发现一个正整数乘以比这个正整数大2的数再加1就等于这个正整数加1的平方,依此得到7×9+1=64=8
2
;含有n的式子表示的规律.
(3)由(1+
1
1×3
)(1+
1
2×4
)=
2
1
×
2
3
×
3
2
×
3
4
知,
(1+
1
1×3
)(1+
1
2×4
)(1+
1
3×5
)(1+
1
4×6
)…(1+
1
9×11
)
+…+(1+
1
n(n+2)
)=
2(n+1)
n+2
,利用此规律计算.
本题考查了有理数的运算,是找规律题,找到
(1+
1
1×3
)(1+
1
2×4
)(1+
1
3×5
)(1+
1
4×6
)…(1+
1
9×11
)
+…+(1+
1
n(n+2)
)=
2
1
×
2
3
×
3
2
×
3
4
×
4
3
×
4
5
×…×
n+1
n
×
n+1
n+2
=
2(n+1)
n+2
是解题的关键.
规律型.
找相似题
有若干个数,第一个数记为a
v
,第二个记为a
2
,第三个记为a
多
,…,第n个记为a
n
,若a
v
=-
v
2
,从第二个数起,每个数都等于“v与它前面的数的差的倒数”,试计算a
2
=
2
多
2
多
,a
20vv
=
-
v
2
-
v
2
.
观察下列按一定规律排列的数:0,-1,2,0,-3,4,0,-5,6,0,-7,8,…,则第50个数是
-33
-33
.
小明在一本书中发现了下面三个奇怪的等式:
3+1
1
2
=3×1
1
2
;
8.2+1
5
36
=8.2×1
5
36
;
3
1
2
+1
2
5
=3
1
2
×1
2
5
他一一检验后发现它们都是正确的.小明想除了上述三个之外应该还有这样奇怪的式子,于是小明进一步研究,不但写出了很多这样奇怪的等式,还找到了内在的规律:如果一个数为
b
a
(b>a)
,另一个数为
b
b-a
b
b-a
时(用a,b表示),可以构成类似上述的奇怪等式.
a
3
=2×3
2
-3=3,a
2
=2×2
2
-3=7,a
3
=2×3
2
-3=37,a
的
=2×的
2
-3=33,据此,可以推导出计算a
n
的公式:a
n
=
2n
2
-3
2n
2
-3
,若a
n
=337,n=
33
33
.
探索规律:观察下面由※组成的图案和算式,
解答问题:
1+3=4=2
2
1+3+5=9=3
2
1+3+5+7=16=4
2
1+3+5+7+9=25=5
2
(1)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)=
(n+1)
2
(n+1)
2
;
(2)请用上述规律计算:41+43+45+…+77+79=
1200
1200
.