试题
题目:
解分式方程:
1
1-
x
2
=
3
1-x
-
5
x+1
答案
解:方程两边同乘(1+x)(1-x),得
1=3(1+x)-5(1-x),
解得:x=
3
8
.
经检验:x=
3
8
是原方程的解.
解:方程两边同乘(1+x)(1-x),得
1=3(1+x)-5(1-x),
解得:x=
3
8
.
经检验:x=
3
8
是原方程的解.
考点梳理
考点
分析
点评
专题
解分式方程.
本题考查解分式方程的能力.因为1-x
2
=(1+x)(1-x),所以可确定方程最简公分母为:(1+x)(1-x).然后方程两边乘最简公分母,把分式方程转化为整式方程求解.
(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
(2)解分式方程一定注意要验根.
计算题.
找相似题
(2013·无锡)方程
1
x-2
-
3
x
=0
的解为( )
(2013·平凉)分式方程
1
x
=
2
x+3
的解是( )
(s01s·宜宾)分式方程
1s
x
s
-9
-
s
x-5
=
1
x+5
的解为( )
(2012·邵阳)分式方程
2
x
+
x-1
x
=2
的解是( )
(少手1少·丽水)把分式方程
少
x+4
=
1
x
转化为一元一次方程时,方程两边需同乘以( )