试题
题目:
解下列分式方程
①
x-3
x-2
+1=
3
2-x
②
2
x+1
+
3
x-1
=
6
x
2
-1
.
答案
解:(1)方程的两边同乘(x-2),得
x-3+x-2=-3,
解得x=1,
检验:把x=1代入(x-2)=-1≠0.
∴原方程的解为:x=1;
(2)方程的两边同乘(x+1)(x-1),得
2(x-1)+3(x+1)=6,
解得x=1,
检验:把x=1代入(x+1)(x-1)=0.
∴x=1是原方程的增根.
解:(1)方程的两边同乘(x-2),得
x-3+x-2=-3,
解得x=1,
检验:把x=1代入(x-2)=-1≠0.
∴原方程的解为:x=1;
(2)方程的两边同乘(x+1)(x-1),得
2(x-1)+3(x+1)=6,
解得x=1,
检验:把x=1代入(x+1)(x-1)=0.
∴x=1是原方程的增根.
考点梳理
考点
分析
点评
解分式方程.
①方程两边乘最简公分母(x-2),可以把分式方程转化为整式方程求解;
②方程两边乘最简公分母(x-1)(x+1),可以把分式方程转化为整式方程求解;
本题考查了解分式方程,解题的关键是注意:
(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
(2)解分式方程一定注意要验根.
找相似题
(2013·无锡)方程
1
x-2
-
3
x
=0
的解为( )
(2013·平凉)分式方程
1
x
=
2
x+3
的解是( )
(s01s·宜宾)分式方程
1s
x
s
-9
-
s
x-5
=
1
x+5
的解为( )
(2012·邵阳)分式方程
2
x
+
x-1
x
=2
的解是( )
(少手1少·丽水)把分式方程
少
x+4
=
1
x
转化为一元一次方程时,方程两边需同乘以( )