试题
题目:
如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC于点M,求证:BN=CM.
答案
证明:连接PB,PC,
∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,
∴PM=PN,∠PMC=∠PNB=90°,
∵P在BC的垂直平分线上,
∴PC=PB,
在Rt△PMC和Rt△PNB中
PC=PB
PM=PN
,
∴Rt△PMC≌Rt△PNB(HL),
∴BN=CM.
证明:连接PB,PC,
∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,
∴PM=PN,∠PMC=∠PNB=90°,
∵P在BC的垂直平分线上,
∴PC=PB,
在Rt△PMC和Rt△PNB中
PC=PB
PM=PN
,
∴Rt△PMC≌Rt△PNB(HL),
∴BN=CM.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;角平分线的性质;线段垂直平分线的性质.
连接PB,PC,根据角平分线性质求出PM=PN,根据线段垂直平分线求出PB=PC,根据HL证Rt△PMC≌Rt△PNB,即可得出答案.
本题考查了全等三角形的性质和判定,线段垂直平分线性质,角平分线性质等知识点,主要考查学生运用定理进行推理的能力.
证明题.
找相似题
(2013·遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于
1
2
MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S
△DAC
:S
△ABC
=1:3.
如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D
(1)∠PCD=∠PDC吗?为什么?
(2)OP是CD的垂直平分线吗?为什么?
如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线于E,EF⊥AB,交AB于F,EG⊥AC,交AC的延长线于G,试问:BF与CG的大小如何?证明你的结论.
如图所示,已知∠ACB=∠ADB=90°,AC=AD,点E在AB上.
(1)判断点A是否在∠CBD的平分线上,并说明理由;
(2)当CE=8时,求DE的长度.
如图,OC是∠AOB的角平分线,P是OC上一点.PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF.求证:DF=EF.