试题

题目:
解分式方程:
(1)
1
2x
=
2
x+3

(2)
1-x
2-x
-3=
1
x-2

(3)
5
x2+x
-
1
x2-x
=0

(4)
x
2x-5
+
5
5-2x
-1=0

答案
解:(1)方程两边乘最简公分母2x(x+3)得,
x+3=4x
解得x=1,
经检验x=1是原方程的解,
∴x=1;  

(2)整理得:
1-x
2-x
-3=-
1
2-x

方程两边乘最简公分母(2-x)得:
1-x-3(2-x)=-1,
解得x=2,
经检验x=2是分式方程的增根,
∴原方程无解;    

(3)方程两边乘最简公分母x(x+1)(x-1)得:
5(x-1)-(x+1)=0,
5x-5-x-1=0,
4x=6,
x=
3
2

经检验,x=
3
2
是原方程的解,
x=
3
2


(4)原方程可变为:
x
2x-5
-
5
2x-5
-1=0
,方程两边同乘以2x-5得:
x-5-(2x-5)=0
解这个整式方程得:x=0
检验:把x=0代入最简公分母:2x-5=-5≠0.
∴x=0是原方程的根.
解:(1)方程两边乘最简公分母2x(x+3)得,
x+3=4x
解得x=1,
经检验x=1是原方程的解,
∴x=1;  

(2)整理得:
1-x
2-x
-3=-
1
2-x

方程两边乘最简公分母(2-x)得:
1-x-3(2-x)=-1,
解得x=2,
经检验x=2是分式方程的增根,
∴原方程无解;    

(3)方程两边乘最简公分母x(x+1)(x-1)得:
5(x-1)-(x+1)=0,
5x-5-x-1=0,
4x=6,
x=
3
2

经检验,x=
3
2
是原方程的解,
x=
3
2


(4)原方程可变为:
x
2x-5
-
5
2x-5
-1=0
,方程两边同乘以2x-5得:
x-5-(2x-5)=0
解这个整式方程得:x=0
检验:把x=0代入最简公分母:2x-5=-5≠0.
∴x=0是原方程的根.
考点梳理
解分式方程.
(1)方程两边乘最简公分母2x(x+3),把分式方程转化为整式方程求解即可;
(2)方程两边乘最简公分母(2-x),把分式方程转化为整式方程求解即可;
(3)方程两边乘最简公分母x(x+1)(x-1),把分式方程转化为整式方程求解即可;
(4)方程两边乘最简公分母(2x-5),把分式方程转化为整式方程求解即可.
考查解分式方程;若分母中的两个数互为相反数,则应先整理为相同的数;单独的一个数,也要乘最简公分母;注意分式方程要验根.
计算题.
找相似题