试题

题目:
1
x-10
+
1
x-6
=
1
x-7
+
1
x-9

答案
解:移项得
1
x-10
-
1
x-9
=
1
x-7
-
1
x-6

两边同时通分得,
x-9-(x-10)
(x-10)(x-9)
=
x-6-(x-7)
(x-7)(x-6)

1
(x-10)(x-9)
=
1
(x-7)(x-6)

∴(x-10)(x-9)=(x-7)(x-6),
∴x=8,
检验,当x=8时,(x-10)(x-9)(x-7)(x-6)≠0,所以x=8是原方程的根.
解:移项得
1
x-10
-
1
x-9
=
1
x-7
-
1
x-6

两边同时通分得,
x-9-(x-10)
(x-10)(x-9)
=
x-6-(x-7)
(x-7)(x-6)

1
(x-10)(x-9)
=
1
(x-7)(x-6)

∴(x-10)(x-9)=(x-7)(x-6),
∴x=8,
检验,当x=8时,(x-10)(x-9)(x-7)(x-6)≠0,所以x=8是原方程的根.
考点梳理
解分式方程.
直接去分母,计算比较麻烦,也易造成计算的错误,因此应先移项,再对方程两边分别通分求解.
如果要求的分式方程比较复杂时,不要进入解方程的程序,一般的,可以通过分式的运算性质进行化简后,再去分母进行解答.
计算题.
找相似题