试题

题目:
(2012·永春县模拟)图(a)、(b)、(c)都是上底与腰长相等,下底是腰长的两倍的等腰梯形.图(a)的腰长是1,图(b)的腰长是2,则图(b)可以分割成4个图(a)的等腰梯形.
(1)若图(c)的腰长是4,则图(c)可以分割成
16
16
个图(a)的等腰梯形;
(2)若图(c)的腰长是64,则图(c) 可以分割成
4096
4096
个图(a)的等腰梯形.
青果学院
答案
16

4096

青果学院解:(1)分别过A,D点作AE⊥BC于E,DF⊥BC于F.
∵上底与腰长相等,下底是腰长的两倍的等腰梯形.图(a)的腰长是1,
∴AB=1,BC=2,BE=
1
2
,AE=
3
2

∴图(a)的面积为:(1+2)×
3
2
÷2=
3
3
4

若图(c)的腰长是4,同理可得图(c)的面积为:(4+8)×2
3
÷2=12
3

∵12
3
÷
3
3
4
=16,
∴图(c)可以分割成16个图(a)的等腰梯形;

(2)若图(c)的腰长是64,同理可得图(c)的面积为:(64+128)×32
3
÷2=3072
3

∵3072
3
÷
3
3
4
=4096,
∴图(c)可以分割成4096个图(a)的等腰梯形.
故答案为:16;4096.
考点梳理
作图—应用与设计作图.
(1)先求出(a)的高,根据梯形的面积公式求得(a)的面积,同理求得腰长是4的图(c)面积,相除即可求解;
(2)由(1)可知(a)的面积,同理求得腰长是64的图(c)面积,相除即可求解.
本题考查了等腰梯形,本题关键是求得等腰梯形的高,熟练掌握梯形的面积公式:S=
1
2
(a+b)h.
压轴题;规律型.
找相似题