试题
题目:
计算、化简、解方程
(1)(-
2
9
-
1
4
+
1
18
)÷(-
1
36
)
(2)-1
1
+[1-(1-0.5×
1
3
)]×[2-(-3)
2
|
(3)5ab
2
-[a
2
b+2(a
2
b-3ab
2
)]
(4)6x-7=4x-5
(5)2y-
1
2
=
1
2
y-3.
答案
解:(1)原式=(-
2
9
-
1
4
+
1
18
)×(-36)
=8+9-2
=15;
(2)原式=-1+1-
5
6
×(-7)
=-1+1+
35
6
=
35
6
;
(3)原式=5ab
2
-a
2
b-2a
2
b+6ab
2
=11ab
2
-3a
2
b;
(4)方程移项合并得:2x=2,
解得:x=1;
(5)去分母得:4y-1=y-6,
移项合并得:3y=-5,
解得:y=-
5
3
.
解:(1)原式=(-
2
9
-
1
4
+
1
18
)×(-36)
=8+9-2
=15;
(2)原式=-1+1-
5
6
×(-7)
=-1+1+
35
6
=
35
6
;
(3)原式=5ab
2
-a
2
b-2a
2
b+6ab
2
=11ab
2
-3a
2
b;
(4)方程移项合并得:2x=2,
解得:x=1;
(5)去分母得:4y-1=y-6,
移项合并得:3y=-5,
解得:y=-
5
3
.
考点梳理
考点
分析
点评
专题
解一元一次方程;有理数的混合运算;整式的加减.
(1)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;
(2)原式先计算乘方运算,以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果;
(3)原式去括号合并即可得到结果;
(4)方程移项合并,将x系数化为1即可求出解;
(5)方程去分母,去括号,移项合并,将y系数化为1,即可求出解.
此题考查了解一元一次方程,有理数的混合运算,以及整式的加减,其步骤为:去分母,去括号,移项合并,将x系数化为1,求出解.
计算题.
找相似题
(2013·株洲)一元一次方程2x=4的解是( )
(2013·海南)若代数式x+3的值为2,则x等于( )
(2008·温州)方程4x-1=3的解是( )
(1998·河北)若2a与1-a互为相反数,则a的值等于( )
(8011·济南模拟)方程1-8x=六x的根为( )