试题
题目:
(2010·宜昌)在梯形ABCD中,AD∥BC,AB=CD,E为AD中点.
(1)求证:△ABE≌△DCE;
(2)若BE平分∠ABC,且AD=10,求AB的长.
答案
(1)证明:∵AD∥BC,AB=CD,
∴∠BAE=∠CDE.
又E为AD中点,∴AE=ED.
∴△ABE≌△DCE.
(2)解:∵AE∥BC,
∴∠AEB=∠EBC.
又BE平分∠ABC,
∴∠ABE=∠EBC.
∴∠ABE=∠AEB,
∴AB=AE.
又
AE=
1
2
AD
,
∴AB=5.
(1)证明:∵AD∥BC,AB=CD,
∴∠BAE=∠CDE.
又E为AD中点,∴AE=ED.
∴△ABE≌△DCE.
(2)解:∵AE∥BC,
∴∠AEB=∠EBC.
又BE平分∠ABC,
∴∠ABE=∠EBC.
∴∠ABE=∠AEB,
∴AB=AE.
又
AE=
1
2
AD
,
∴AB=5.
考点梳理
考点
分析
点评
专题
梯形;全等三角形的判定.
(1)根据等腰梯形的性质可得∠BAE=∠CDE,再根据SAS即可证明;
(2)根据角平分线的定义和平行线的性质即可发现等腰三角形ABE,从而求解.
此题主要是运用了等腰梯形的性质、全等三角形的判定以及角平分线的定义和等腰三角形的判定.
计算题;证明题.
找相似题
(2011·宿迁)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )
(2009·武汉)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:
①△ACD≌△ACE;②△CDE为等边三角形;③
EH
BE
=2;④
S
△EBC
S
△EHC
=
AH
CH
.
其中结论正确的是( )
(2007·陕西)如图,在等边△ABC中,点O在AC上,且AO=3,CO=6,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是( )
(2006·临沂)如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有( )
(2005·四川)下列说法中,正确的是( )