试题
题目:
数独(sūdoku)是一种源自18世纪末的瑞士,后在美国发展、并在日本发扬光大的数学智力拼图游戏.拼图是九宫格(即3格宽×3格高)的正方形状,每一格又细分为一个九宫格.在每一个小九宫格中,分别填上1至9的数字,让整个大九宫格每一列、每一行的数字都不重复.下面是一个数独游戏,请完成该游戏.(您只需要完整地填出其中的5个小九宫格即可)
(评分标准:完整地填出其中的5个小九宫格且5个均正确即可给满分.未填出5个不给分.若填出超过5个且无错给满分,若填出超过5个且有任何一处错误不给分.)
答案
解:
解:
考点梳理
考点
分析
点评
专题
规律型:数字的变化类.
根据横列、竖列和方格的限制条件排除各个点不可能的数字,并从1-9将各个可能的数字用小字体逐个写进每个空白的格子.然后再进行审查即可.
本题要根据已有横列和竖列的数字来划定要填的空的数的范围,然后再逐个进行试验,直到发现某一个数字在各个横列、竖列或方格中出现的次数仅一次时,这个数字就填写正确了.然后重复上面的步骤进行填写即可.
阅读型.
找相似题
探索规律:现有一列数,a
1
,a
2
,a
3
,…a
97
,a
98
,a
99
,a
100
,其中a
3
=9,a
7
=-7,a
98
=-1,且满足任意相邻三个数的和为同一常数,则a
1
+a
2
+a
3
+a
4
+…+a
97
+a
98
+a
99
+a
100
=
26
26
.
请观察下列算式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,
1
4×5
=
1
4
-
1
5
则第10个算式为
1
10×11
1
10×11
=
1
10
-
1
11
1
10
-
1
11
,
第n个算式为
1
n×(n+1)
1
n×(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
请计算
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2002×2003
.
(1)观察一列数a
1
=3,a
2
=9,a
3
=27,a
4
=81,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是
3
3
;根据此规律,如果a
n
(n为正整数)表示这个数列的第n项,那么a
6
=
3
6
3
6
,a
n
=
3
n
3
n
;(可用幂的形式表示)
(2)如果想要求1+2+2
2
+2
3
+…+2
10
的值,可令
S
10
=1+2+
2
2
+
2
3
+…+
2
10
①将①式两边同乘以2,得
2S
10
=2+2
2
+2
3
+…+2
10
+2
11
2S
10
=2+2
2
+2
3
+…+2
10
+2
11
②,由②减去①式,得S
10
=
2
11
-1
2
11
-1
.
(3)若(1)中数列共有20项,设S
20
=3+9+27+81+…+a
20
,请利用上述规律和方法计算S
20
的值.
(4)设一列数
1,
1
2
,
1
4
,
1
8
,…,
1
2
n-1
的和为S
n
,则S
n
的值为
2-
1
2
n-1
2-
1
2
n-1
.
将连续的奇数1,3,5,7,9…,排成如下的数表:
(1)计算十字框中的五个数的平均数,它与中间的数15有什么关系?
(2)请将十字框上下左右适当平移,使它框住另外的五个数,画出图形并进行计算,上边的关系还成立吗?
(3)象这样框住的五个数之和能否等于305?请说明理由.
观察下面三行数:
2,-4,8,-16,…①
-1,2,-4,8,…②
3,-3,9,-15,…③
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?
(3)取每行数的第10个数,计算这三个数的和?