答案
证明:∵an-bm≠0
∴方程ax
2+bx+c=0和方程mx
2+nx+p=0有相等的根.
方程ax
2+bx+c=0可化为x
2+
x+
=0 ①
方程mx
2+nx+p=0可化为x
2+
x+
=0 ②
把方程①-②可得:(
-
)x+(
-
)=0
解方程得:
x+
=0
(bm-an)x+(cm-ap)=0
x=
把x=
代入方程ax
2+bx+c=0
得:a
()2+b(
)+c=0
a(ap-cm)
2+b(ap-cm)(bm-an)+c(bm-an)
2=0
a(ap-cm)
2+(bm-an)(abp-bcm+bcm-can)=0
a(ap-cm)
2+a(bm-an)(bp-cn)=0
∵a≠0,
∴两边同时除以a得到:(ap-cm)
2+(bm-an)(bp-cn)=0
故(ap-cm)
2=(bp-cn)(an-bm).
证明:∵an-bm≠0
∴方程ax
2+bx+c=0和方程mx
2+nx+p=0有相等的根.
方程ax
2+bx+c=0可化为x
2+
x+
=0 ①
方程mx
2+nx+p=0可化为x
2+
x+
=0 ②
把方程①-②可得:(
-
)x+(
-
)=0
解方程得:
x+
=0
(bm-an)x+(cm-ap)=0
x=
把x=
代入方程ax
2+bx+c=0
得:a
()2+b(
)+c=0
a(ap-cm)
2+b(ap-cm)(bm-an)+c(bm-an)
2=0
a(ap-cm)
2+(bm-an)(abp-bcm+bcm-can)=0
a(ap-cm)
2+a(bm-an)(bp-cn)=0
∵a≠0,
∴两边同时除以a得到:(ap-cm)
2+(bm-an)(bp-cn)=0
故(ap-cm)
2=(bp-cn)(an-bm).