试题

题目:
青果学院(2013·桂林)如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.求证:
(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.
答案
证明:(1)在矩形ABCD中,∠B=∠C=90°,AB=DC,
∵BE=CF,BF=BC-FC,CE=BC-BE,
∴BF=CE,
在△ABF和△DCE中,
AB=DC
∠B=∠C
BF=CE

∴△ABF≌△DCE(SAS);

(2)∵△ABF≌△DCE,
∴∠BAF=∠EDC,
∵∠DAF=90°-∠BAF,∠EDA=90°-∠EDC,
∴∠DAF=∠EDA,
∴△AOD是等腰三角形.
证明:(1)在矩形ABCD中,∠B=∠C=90°,AB=DC,
∵BE=CF,BF=BC-FC,CE=BC-BE,
∴BF=CE,
在△ABF和△DCE中,
AB=DC
∠B=∠C
BF=CE

∴△ABF≌△DCE(SAS);

(2)∵△ABF≌△DCE,
∴∠BAF=∠EDC,
∵∠DAF=90°-∠BAF,∠EDA=90°-∠EDC,
∴∠DAF=∠EDA,
∴△AOD是等腰三角形.
考点梳理
矩形的性质;全等三角形的判定与性质;等腰三角形的判定.
(1)根据矩形的性质可得∠B=∠C=90°,AB=DC,然后求出BF=CE,再利用“边角边”证明△ABF和△DCE全等即可;
(2)根据全等三角形对应角相等可得∠BAF=∠EDC,然后求出∠DAF=∠EDA,然后根据等腰三角形的定义证明即可.
本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形的判定,熟记性质确定出三角形全等的条件是解题的关键.
证明题.
找相似题