试题

题目:
青果学院如图,已知AD⊥BD,AC⊥BC,E为AB的中点,则△CDE一定是(  )



答案
C
解:∵AD⊥BD,AC⊥BC,E为AB的中点,
∴DE=
1
2
AB,CE=
1
2
AB,
∴DE=CE,
∴△CDE一定是等腰三角形.
故选C.
考点梳理
等腰三角形的判定;直角三角形斜边上的中线.
根据直角三角形斜边上的中线的性质可得DE=
1
2
AB,CE=
1
2
AB,可得DE=CE,再根据等腰三角形的判定进行选择.
考查了直角三角形斜边上的中线的性质,等腰三角形的判定,将AB作为纽带,得到DE=CE是解题的关键.
找相似题