试题
题目:
有两条线段的长分别为a=8cm,b=6cm,要选一条线段c,使a、b、c构成一个三角形,则c的取值范围应是
2<c<14
2<c<14
.
答案
2<c<14
解:∵此三角形的两边长a=8cm,b=6cm,
∴第三边长的取值范围是:8-6=2<c<8+6=14.
即:2<c<14.
故答案为:2<c<14.
考点梳理
考点
分析
点评
三角形三边关系.
根据三角形三边关系:任意两边之和大于第三边以及任意两边之差小于第三边,即可得出第三边的取值范围.
此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.
找相似题
以下列各组线段为边,能组成三角形的是( )
将下列长度的三条线段首尾顺次相接,能组成三角形的是( )
要想以两根长为13cm、15cm的木棒做一个三角形,可以选用第三根木棒的长为( )
下列各组数不可能是一个三角形的三边长的是( )
三角形的两边长分别为4、7,周长为奇数,则第三边长为( )