试题

题目:
计算
(1)x(2x-1)-x2(2-x);
(2)(2ab2-b32÷2b3
(3)
3
-
27
+
1
3

(4)
1
2
3
÷
2
1
3
×
1
2
5

(5)(2
12
-3
1
3
6

(6)(-
3
)2-
1
2
+|1-
2
|

答案
解:(1)x(2x-1)-x2(2-x)
=2x2-x-2x2+x3
=x3-x;
(2)(2ab2-b32÷2b3
=(4a2b4-4ab5+b6)÷2b3
=2a2b-2ab2+
1
2
b3

(3)
3
-
27
+
1
3

=
3
-3
3
+
3
3

=-
5
3
3

(4)
1
2
3
÷
2
1
3
×
1
2
5

=
5
3
×
3
7
×
7
5

=
1

=1;
(5)(2
12
-3
1
3
6

=2
2×6×6
-3
2

=2·6
2
-3
2

=12
2
-3
2

=9
2

(6)(-
3
)2-
1
2
+|1-
2
|

=3-
2
2
+
2
-1

=2+
2
2

解:(1)x(2x-1)-x2(2-x)
=2x2-x-2x2+x3
=x3-x;
(2)(2ab2-b32÷2b3
=(4a2b4-4ab5+b6)÷2b3
=2a2b-2ab2+
1
2
b3

(3)
3
-
27
+
1
3

=
3
-3
3
+
3
3

=-
5
3
3

(4)
1
2
3
÷
2
1
3
×
1
2
5

=
5
3
×
3
7
×
7
5

=
1

=1;
(5)(2
12
-3
1
3
6

=2
2×6×6
-3
2

=2·6
2
-3
2

=12
2
-3
2

=9
2

(6)(-
3
)2-
1
2
+|1-
2
|

=3-
2
2
+
2
-1

=2+
2
2
考点梳理
二次根式的乘除法;整式的加减;单项式乘单项式;整式的除法.
(1)先计算单项式与多项式的乘法,再合并同类项;
(2)先运用完全平方差公式计算,再算多项式与单项式的除法;
(3)先化为最简根式,再合并同类二次根式;
(4)按照
a
·
b
=
ab
(a≥0,b≥0)进行计算;
(5)运用乘法的分配律简化计算;
(6)先乘方和分母有理化,再合并同类二次根式即可.
本题实质是考查整式的有关计算以及二次根式的运算.注意结合算式的特点,选择简便的方法进行计算.
找相似题