试题
题目:
式子
1
2
(x
2
-2y)+
1
3
(x-y
2
)-
1
6
(x
2
+y
2
)=
1
3
x
2
-
1
2
y
2
-y+
1
3
x
1
3
x
2
-
1
2
y
2
-y+
1
3
x
.
答案
1
3
x
2
-
1
2
y
2
-y+
1
3
x
解:原式=
1
2
x
2
-y+
1
3
x-
1
3
y
2
-
1
6
x
2
-
1
6
y
2
=
1
3
x
2
-
1
2
y
2
-y+
1
3
x
故应该填:
1
3
x
2
-
1
2
y
2
-y+
1
3
x.
考点梳理
考点
分析
点评
整式的加减.
先去括号,然后进行同类项的合并.
本题考查整式的加减运算,注意先去括号,然后进行同类项的合并.
找相似题
(2012·济南)化简5(2x-3)+4(3-2x)结果为( )
(2009·南汇区三模)相邻的两个自然数的和是( )
下列计算正确的是( )
化简(m-n)-(m-2n)的结果是( )
下列哪个式子的计算结果为7a
2
-7ab( )