试题
题目:
(2010·江宁区一模)如图,△ABC中,AB=AC,D是CA延长线上的一点,且∠B=∠DAM.求证:AM∥BC.
答案
证明:∵AB=AC,
∴∠B=∠C,
∵∠B=∠DAM,
∴∠C=∠DAM,
∴AM∥BC.
证明:∵AB=AC,
∴∠B=∠C,
∵∠B=∠DAM,
∴∠C=∠DAM,
∴AM∥BC.
考点梳理
考点
分析
点评
专题
平行线的判定.
判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.要证明AM∥BC,只要转化为证明∠C=∠DAM即可.
本题主要考查了平行线的判定,注意等量代换的应用.
证明题.
找相似题
(2013·抚顺)如图,直线l
1
、l
2
被直线l
3
、l
4
所截,下列条件中,不能判断直线l
1
∥l
2
的是( )
(1999·西安)下列命题中,不正确的是( )
(1999·青岛)如图,AD是△ABC的角平分线,⊙O过点A且和BC相切于点D,和AB、AC分别交于点E,F,如果BD=AE,且BE=a,CF=b,则AF的长为( )
(2007·长宁区二模)下列命题中正确的是( )
如图,下列条件中,一定能判断AB∥CD的是( )