答案

(1)证法一:连接BD.∵∠FEB=∠FDB,∠FDB=∠C.∴∠FEB=∠C.
又∵AB=AC,∴∠ABC=∠C,∴∠FEB=∠ABC,∴EF∥CG.
证法二:
也可证出∠AGB=∠EFD(同位角),得出EF∥CG.
(2)证法一:
∵EF∥CG,∴∠DFE=∠G.又∵∠DBE=∠DFE,∴∠DBE=∠G,
即∠DBE=∠CGA.∵∠ABC=∠C,∠ABC=∠BDE,∴∠BDE=∠C,
即∠BDE=∠GCA.∴△BDE∽△GCA.
∴
=∵AB=AC,
∴AB·EB=DE·AG.
证法二:连接BF.
可证△ADE∽△ABF,得
=.
由EF∥CG,得
=,从而可得
=再证BE=BF,得AB·BE=DE·AG.

(1)证法一:连接BD.∵∠FEB=∠FDB,∠FDB=∠C.∴∠FEB=∠C.
又∵AB=AC,∴∠ABC=∠C,∴∠FEB=∠ABC,∴EF∥CG.
证法二:
也可证出∠AGB=∠EFD(同位角),得出EF∥CG.
(2)证法一:
∵EF∥CG,∴∠DFE=∠G.又∵∠DBE=∠DFE,∴∠DBE=∠G,
即∠DBE=∠CGA.∵∠ABC=∠C,∠ABC=∠BDE,∴∠BDE=∠C,
即∠BDE=∠GCA.∴△BDE∽△GCA.
∴
=∵AB=AC,
∴AB·EB=DE·AG.
证法二:连接BF.
可证△ADE∽△ABF,得
=.
由EF∥CG,得
=,从而可得
=再证BE=BF,得AB·BE=DE·AG.