试题
题目:
如图,已知:∠1与∠2互补,∠A=∠D,求证:AB∥CD.
答案
证明:∵∠1=∠CGD,∠1与∠2互补,
∴∠CGD+∠2=180°,
∴AF∥ED,
∴∠A+∠AED=180°,
∵∠A=∠D,
∴∠D+∠AED=180°,
∴AB∥CD.
证明:∵∠1=∠CGD,∠1与∠2互补,
∴∠CGD+∠2=180°,
∴AF∥ED,
∴∠A+∠AED=180°,
∵∠A=∠D,
∴∠D+∠AED=180°,
∴AB∥CD.
考点梳理
考点
分析
点评
专题
平行线的判定.
由对顶角相等得到一对角相等,根据已知一对角互补,得到同旁内角互补,利用同旁内角互补两直线平行得到AF与ED平行,由两直线平行同旁内角互补得到一对角互补,等量代换得到∠D与∠AED互补,利用同旁内角互补两直线平行即可得证.
此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
计算题;证明题.
找相似题
(2013·抚顺)如图,直线l
1
、l
2
被直线l
3
、l
4
所截,下列条件中,不能判断直线l
1
∥l
2
的是( )
(1999·西安)下列命题中,不正确的是( )
(1999·青岛)如图,AD是△ABC的角平分线,⊙O过点A且和BC相切于点D,和AB、AC分别交于点E,F,如果BD=AE,且BE=a,CF=b,则AF的长为( )
(2007·长宁区二模)下列命题中正确的是( )
如图,下列条件中,一定能判断AB∥CD的是( )