试题
题目:
如图,直线AB、CD被直线EF所截,∠AMN=∠CNF,∠1=∠2,
(1)证明:AB∥CD;
(2)还有别的平行线吗?请指出来,并说明理由.
答案
解:(1)∵∠AMN=∠CNF,
∴AB∥CD;
(2)MP∥NQ,理由为:
∵AB∥CD,
∴∠BMN=∠DNF,
∵∠1=∠2,
∴∠BMN-∠1=∠DNF-∠2,即∠PMN=∠QNF,
∴MP∥NQ.
解:(1)∵∠AMN=∠CNF,
∴AB∥CD;
(2)MP∥NQ,理由为:
∵AB∥CD,
∴∠BMN=∠DNF,
∵∠1=∠2,
∴∠BMN-∠1=∠DNF-∠2,即∠PMN=∠QNF,
∴MP∥NQ.
考点梳理
考点
分析
点评
专题
平行线的判定.
(1)由同位角相等两直线平行即可得证;
(2)还有MP平行于NQ,理由为由AB与CD平行,利用两直线平行得到一对同位角相等,再由∠1=∠2,利用等式的性质得到一对同位角相等,利用同位角相等两直线平行即可得证.
此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
计算题.
找相似题
(2013·抚顺)如图,直线l
1
、l
2
被直线l
3
、l
4
所截,下列条件中,不能判断直线l
1
∥l
2
的是( )
(1999·西安)下列命题中,不正确的是( )
(1999·青岛)如图,AD是△ABC的角平分线,⊙O过点A且和BC相切于点D,和AB、AC分别交于点E,F,如果BD=AE,且BE=a,CF=b,则AF的长为( )
(2007·长宁区二模)下列命题中正确的是( )
如图,下列条件中,一定能判断AB∥CD的是( )