试题
题目:
如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,分别交AD、BC于E、F,
求证:BE∥DF.
答案
证明:∵∠A=∠C=90°,
∴∠ABC+∠ADC=360°-∠A-∠C=180°,
∵BE平分∠ABC,DF平分∠ADC,
∴∠ABE+∠EDF=90°,
∵∠ABE+∠AEB=90°,
∴∠AEB=∠ADF,
∴BE∥DF.
证明:∵∠A=∠C=90°,
∴∠ABC+∠ADC=360°-∠A-∠C=180°,
∵BE平分∠ABC,DF平分∠ADC,
∴∠ABE+∠EDF=90°,
∵∠ABE+∠AEB=90°,
∴∠AEB=∠ADF,
∴BE∥DF.
考点梳理
考点
分析
点评
专题
平行线的判定.
首先根据四边形内角和定理得出∠ABC+∠ADC=180°,进而利用角平分线的性质得出∠ABE+∠EDF=90°,即可得出∠AEB=∠ADF,利用平行线的判定得出即可.
此题主要考查了平行线的判定以及四边形的内角和性质和角平分线的性质等知识,根据已知得出∠ABE+∠EDF=90°是解题关键.
证明题.
找相似题
(2013·抚顺)如图,直线l
1
、l
2
被直线l
3
、l
4
所截,下列条件中,不能判断直线l
1
∥l
2
的是( )
(1999·西安)下列命题中,不正确的是( )
(1999·青岛)如图,AD是△ABC的角平分线,⊙O过点A且和BC相切于点D,和AB、AC分别交于点E,F,如果BD=AE,且BE=a,CF=b,则AF的长为( )
(2007·长宁区二模)下列命题中正确的是( )
如图,下列条件中,一定能判断AB∥CD的是( )