试题
题目:
如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足.AE=CF,求证:∠ACB=90°.
答案
证明:如图,在Rt△ACE和Rt△CBF中,
AC=BC
AE=CF
,
∴Rt△ACE≌Rt△CBF(HL),
∴∠EAC=∠BCF,
∵∠EAC+∠ACE=90°,
∴∠ACE+∠BCF=90°,
∴∠ACB=180°-90°=90°.
证明:如图,在Rt△ACE和Rt△CBF中,
AC=BC
AE=CF
,
∴Rt△ACE≌Rt△CBF(HL),
∴∠EAC=∠BCF,
∵∠EAC+∠ACE=90°,
∴∠ACE+∠BCF=90°,
∴∠ACB=180°-90°=90°.
考点梳理
考点
分析
点评
专题
直角三角形全等的判定;全等三角形的性质.
先利用HL定理证明△ACE和△CBF全等,再根据全等三角形对应角相等可以得到∠EAC=∠BCF,因为∠EAC+ACE=90°,所以∠ACE+∠BCF=90°,根据平角定义可得∠ACB=90°.
本题主要考查全等三角形的判定,全等三角形对应角相等的性质,熟练掌握性质是解题的关键.
证明题.
找相似题
如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是( )
下列各组条件中,能判断两个直角三角形全等的是( )
在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是( )
如下图,要用“HL”判断Rt△ABC和Rt△DEF全等的条件是( )
如图所示,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正确的有( )