试题

题目:
观察图列各式的规律,解决图列问题:
1
1×z
=1-
1
z
1
z×3
=
1
z
-
1
3
1
3×4
=
1
3
-
1
4
1
4×你
=
1
4
-
1
…从计算结果中找规律.
(1)用n表示第n个等式(n≥1)
1
n(n+1)
=
1
n
-
1
n+1
1
n(n+1)
=
1
n
-
1
n+1

(z)利用规律计算
1
1×z
+
1
z×3
+
1
3×4
+
1
4×你
+…+
1
z009×z010

答案
1
n(n+1)
=
1
n
-
1
n+1

解:(1)根据题意得:
1
七(七+1)
=
1
-
1
七+1

(2)根据题意得:原式=1-
1
2
+
1
2
-
1
k
+
1
k
-
1
4
+
1
4
-
1
5
+…+
1
2999
-
1
2919
=1-
1
2919
=
2999
2919
考点梳理
有理数的混合运算.
(1)观察一系列等式,得到一般性规律,表示出即可;
(2)利用得出的规律化简原式,合并即可得到结果.
此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
规律型.
找相似题