试题
题目:
如图,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.
答案
解:可以确定6个三角形.
理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,
所以图中可以确定6个三角形.
解:可以确定6个三角形.
理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,
所以图中可以确定6个三角形.
考点梳理
考点
分析
点评
三角形.
经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,因而三角形的个数就是B、C、D、E四点中,两个分成一组,点的组数.
本题考查了构成三角形的条件:不在同一直线上的三点有且只有一个三角形.
找相似题
(2009·呼和浩特)已知△ABC的一个外角为50°,则△ABC一定是( )
(2006·绍兴)若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有( )
已知三角形ABC三边a、b、c满足(a-b)
2
+|b-c|=0,则△ABC的形状是( )
若△ABC三个内角的度数分别为m、n、p,且|m-n|+(n-p)
2
=0,则这个三角形为( )
如图所示,图中共有三角形( )