试题
题目:
如图,图中所有三角形的个数是
30
30
.
答案
30
解:线段AB与点C组成5×(5-1)÷2=10个三角形,以此类推,共有10×3=30个.
故答案为30.
考点梳理
考点
分析
点评
三角形.
线段AB上有5个点,可以与点C组成5×(5-1)÷2=10个三角形,线段DE上有5个点,可以与点C组成5×(5-1)÷2=10个三角形,以此类推,共有10×3=30个.
考查了数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有
n(n-1)
2
条线段,也可以与线段外的一点组成
n(n-1)
2
个三角形.
找相似题
(2009·呼和浩特)已知△ABC的一个外角为50°,则△ABC一定是( )
(2006·绍兴)若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有( )
已知三角形ABC三边a、b、c满足(a-b)
2
+|b-c|=0,则△ABC的形状是( )
若△ABC三个内角的度数分别为m、n、p,且|m-n|+(n-p)
2
=0,则这个三角形为( )
如图所示,图中共有三角形( )