试题
题目:
如图,直角ABC的周长为2008,在其内部有五个小直角三角形,则这五个小直角三角形的周长为
2008
2008
.
答案
2008
解:∵五个小直角三角形与大三角形相似,
∴对应边的比相等,
∵五个小三角形的斜边长的和等于大三角形的斜边长,
∴五个小三角形的周长的和等于大三角形的周长为2008.
考点梳理
考点
分析
点评
三角形.
根据题意可得:五个小直角三角形与大三角形相似,可得对应边都成比例,对应周长的比等于相似比.
因为五个小三角形的斜边长的和等于大三角形的斜边长,由等比性质,可得五个小三角形的斜边长的和等于大三角形的斜边长.
此题考查了相似三角形的性质.注意等比性质的应用.
找相似题
(2009·呼和浩特)已知△ABC的一个外角为50°,则△ABC一定是( )
(2006·绍兴)若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有( )
已知三角形ABC三边a、b、c满足(a-b)
2
+|b-c|=0,则△ABC的形状是( )
若△ABC三个内角的度数分别为m、n、p,且|m-n|+(n-p)
2
=0,则这个三角形为( )
如图所示,图中共有三角形( )