试题

题目:
(2004·天津)在一次数学知识竞赛中,某班20名学生的成绩入下表所示:
 成绩
(单位:分)
 50  60  70  80  90
 人数  2  3  6  7  2
分别求这些学生成绩的众数、中位数、和平均数.
答案
解:平均数是:
50×2+60×3+70×6+80×7+90×2
2+3+6+7+2
=72(分);
由列表中80分对应的人数最多,因此这组数据的众数应该是80(分);
由于人数总和是20人为偶数,将数据从小到大排列后,第10个和第11个数据都是70分,因此这组数据的中位数应该是70(分).
解:平均数是:
50×2+60×3+70×6+80×7+90×2
2+3+6+7+2
=72(分);
由列表中80分对应的人数最多,因此这组数据的众数应该是80(分);
由于人数总和是20人为偶数,将数据从小到大排列后,第10个和第11个数据都是70分,因此这组数据的中位数应该是70(分).
考点梳理
加权平均数;中位数;众数.
要求平均数只要求出数据之和再除以总个数即可;求中位数时,要先看相关数据的总数是奇数还是偶数,本题中人数的总个数是20人,偶数,因此应该看从小到大排列后第10个和第11个学生的成绩分别是多少,然后求出他们的平均数即可;众数是出现次数最多的数,因此只需找出各成绩中对应人数最多的那个即可.
本题考查的是平均数、众数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.
计算题.
找相似题