试题
题目:
半径为15cm和13cm的两个圆相交,它们的公共弦长为24cm,则这两个圆的圆心距等于( )
A.4cm
B.4cm或14cm
C.9cm
D.9cm或14cm
答案
B
解:∵两个圆相交,公共弦长为24cm,
∴连接两圆的圆心,连心线的一半,半径和公共弦的一半构成直角三角形.
当两圆的圆心在公共弦的两侧时,解得圆心距为
15
2
-
12
2
+
13
2
-
12
2
=9+5=14cm;
当两圆的圆心在公共弦的同侧时,解得公共弦长为
15
2
-
12
2
-
13
2
-
12
2
=9-5=4cm.
故选B.
考点梳理
考点
分析
点评
相交两圆的性质.
因为两个圆相交,公共弦长为24cm,所以连接两圆的圆心,连心线的一半,半径和公共弦的一半构成直角三角形;根据勾股定理,考虑当两圆的圆心在公共弦的两侧时,当两圆的圆心在公共弦的同侧时两种情况,求圆心距.
本题考查了由两圆位置关系来判断半径和圆心距之间数量关系的方法.两圆的半径分别为R和r,且R≥r,圆心距为P,则外离:P>R+r;外切:P=R+r;相交:R-r<P<R+r;内切:P=R-r;内含:P<R-r.
找相似题
(2004·荆门)如图,⊙O
1
与⊙O
2
相交于A、B两点,AC是⊙O
2
的切线,AD是⊙O
1
的切线,若BC=4,BD=9,则AB的长为( )
(2000·河南)如图,⊙O
1
与⊙O
2
相交于A、B.已知两圆的半径r
1
=10,r
2
=17,圆心距O
1
O
2
=21,公共弦AB等于( )
已知相交两圆的半径分别为10和17,公共弦长为16,则此相交两圆的圆心距为( )
如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C、D分别在两圆上,若∠ACB=50°,则∠ADB的度数为( )
若⊙O
1
与⊙O
2
相交于A,B两点,⊙O
1
与⊙O
2
半径分别为2和
2
,公共弦长为2,则∠O
1
AO
2
的度数为( )